-
شماره ركورد
24627
-
شماره راهنما
ELE2 485
-
نويسنده
سرشوق، سارا
-
عنوان
بهبود بازيابي دقيق جامعههاي شبكه به كمك اطلاعات حاشيهاي در مدل بلوكي تصادفي بدون معلوم بودن پارامترهاي مدل
-
مقطع تحصيلي
كارشناسي ارشد
-
رشته تحصيلي
مهندسي برق - مخابرات سيستم
-
دانشكده
فني و مهندسي
-
تاريخ دفاع
1403/11/02
-
صفحه شمار
133 ص.
-
استاد راهنما
فرزاد پرورش
-
كليدواژه فارسي
يادگيري ماشين , آشكارسازي جامعه , مدل بلوكي تصادفي , اطلاعات حاشيهاي , بازيابي دقيق
-
چكيده فارسي
ﺷﻨﺎﺳﺎﯾﯽ ﺟﺎﻣﻌﻪ ﻫﺎ، ﺣﻮزه اي ﺗﺨﺼﺼﯽ از ﭘﮋوﻫﺶ اﺳﺖ و ﺑﺎ ﻫﺪف رﻣﺰﮔﺸﺎﯾﯽ ﺳﺎﺧﺘﺎرﻫﺎ و ﺗﻌﺎﻣﻼت ﭘﯿﭽﯿﺪه
در اﯾﻦ ﮔﺮاف ﻫﺎ از ﻃﺮﯾﻖ ﺧﻮﺷﻪ ﺑﻨﺪي ﮔﺮه ﻫﺎ ﺑﺮ اﺳﺎس اﻃﻼﻋﺎت اراﺋﻪ ﺷﺪه ﺗﻮﺳﻂ ﮔﺮاف ﺑﺮرﺳﯽ ﻣﯽ ﺷﻮد.
اﯾﻦ ﻓﺮاﯾﻨﺪ در ﮔﺮاف ﻫﺎي ﻧﻤﺎﯾﻨﺪه ي ﺷﺒﮑﻪ ﻫﺎ ﮐﺎرﺑﺮدﻫﺎﯾﯽ در ﺟﺎﻣﻌﻪ ﺷﻨﺎﺳﯽ، زﯾﺴﺖ ﺷﻨﺎﺳﯽ و ﻋﻠﻮم ﮐﺎﻣﭙﯿﻮﺗﺮ
دارد و ﻣﺴﺌﻠﻪ اي ﭼﺎﻟﺶ ﺑﺮاﻧﮕﯿﺰ اﺳﺖ. ﺑﺮرﺳﯽ ﺷﺒﮑﻪ ﻫﺎي ﭘﯿﭽﯿﺪه ﺑﻪ ﻃﻮر ﭼﺸﻢ ﮔﯿﺮي درك ﻣﺎ را از ﺳﺎﺧﺘﺎر
ﺟﺎﻣﻌﻪ ﻫﺎ ﮐﻪ وﯾﮋﮔﯽ ﺑﺮﺟﺴﺘﻪ اي از ﮔﺮاف ﻫﺎي دﻧﯿﺎي واﻗﻌﯿﻨﺪ، ﺑﻬﺒﻮد ﺑﺨﺸﯿﺪه اﺳﺖ. ﺑﺎوﺟﻮد ﮐﻮﺷﺶ ﻫﺎي
ﺟﺎﻣﻌﻪ ﻋﻠﻤﯽ ﺑﯿﻦ رﺷﺘﻪ اي، ﻫﻨﻮز راه ﺣﻞ رﺿﺎﯾﺖ ﺑﺨﺸﯽ ﺑﺮاي اﯾﻦ ﻣﺴﺌﻠﻪ ﺑﻪ دﺳﺖ ﻧﯿﺎﻣﺪه اﺳﺖ. ﻣﺪل ﺑﻠﻮﮐﯽ
ﺗﺼﺎدﻓﯽ ﮐﻪ ﺑﻪ ﻋﻨﻮان ﻣﺪل ﺗﻘﺴﯿﻢ ﺑﻨﺪي ﮐﺎﺷﺘﻪ ﺷﺪه ﻧﯿﺰ ﺷﻨﺎﺧﺘﻪ ﻣﯽ ﺷﻮد، درواﻗﻊ ﺑﻪ ﻋﻨﻮان ﯾﮏ ﻣﺪل ﮔﺮاف
ﺗﺼﺎدﻓﯽ اﺳﺘﺎﻧﺪارد ﺑﺮاي ﺑﺮرﺳﯽ ﺧﻮﺷﻪ ﺑﻨﺪي و ﺷﻨﺎﺳﺎﯾﯽ ﺟﺎﻣﻌﻪ ﻫﺎ در داده ﻫﺎي ﺳﺎﺧﺘﺎرﯾﺎﻓﺘﻪ ﺷﺒﮑﻪ اي در ﻧﻈﺮ
ﮔﺮﻓﺘﻪ ﻣﯽ ﺷﻮد. اﯾﻦ ﻣﺴﺌﻠﻪ درﺑﺮﮔﯿﺮﻧﺪه ﺧﻮﺷﻪ ﺑﻨﺪي و آﺷﮑﺎر ﺳﺎﺧﺘﻦ ﮔﺮوه ﻫﺎﯾﯽ از ﮔﺮه ﻫﺎ ﺑﺎ ﯾﺎل ﻫﺎي داﺧﻠﯽ
ﺑﺎ ﭼﮕﺎﻟﯽ ﺑﯿﺸﺘﺮ از ﭼﮕﺎﻟﯽ ﯾﺎل ﻫﺎي ﺧﺎرﺟﯽ در ﺗﺤﻠﯿﻞ ﺷﺒﮑﻪ ﻫﺎي ﭘﯿﭽﯿﺪه اﺳﺖ. ﺳﯿﺴﺘﻢ ﻫﺎي دﻧﯿﺎي واﻗﻌﯽ
ﻣﺎﻧﻨﺪ ﺷﺒﮑﻪ ﻫﺎي اﺟﺘﻤﺎﻋﯽ، ﺷﺒﮑﻪ ﻫﺎي زﯾﺴﺘﯽ و ﺷﺒﮑﻪ ﻫﺎي ﻓﻨﺎوري، ﺳﺎﺧﺘﺎرﻫﺎ و ﺗﻌﺎﻣﻼت ﭘﯿﭽﯿﺪه اي را ﺑﻪ
ﻧﻤﺎﯾﺶ ﻣﯽ ﮔﺬارﻧﺪ. اﯾﻦ ﺳﯿﺴﺘﻢ ﻫﺎ اﻏﻠﺐ ﻣﯽ ﺗﻮاﻧﻨﺪ ﺑﻪ ﻋﻨﻮان ﮔﺮاف ﻫﺎﯾﯽ ﻧﺸﺎن داده ﺷﻮﻧﺪ ﮐﻪ در آن رأس ﻫﺎ
ﻧﻤﺎﯾﺎﻧﮕﺮ اﻓﺮاد و ﯾﺎل ﻫﺎ ﻧﻤﺎﯾﺎﻧﮕﺮ ﺗﻌﺎﻣﻼت ﻣﯿﺎن آن ﻫﺎ ﻫﺴﺖ. ﻫﻤﭽﻨﯿﻦ ﺧﻮﺷﻪ ﺑﻨﺪي ﻧﯿﻤﻪ ﻧﻈﺎرت ﺷﺪه ﺷﻨﺎﺳﺎﯾﯽ
ﺟﺎﻣﻌﻪ ﺑﻪ ﮐﻤﮏ اﻃﻼﻋﺎت ﺣﺎﺷﯿﻪ اي ﻣﻮﺟﻮد و ﺑﻪ ﮐﺎرﮔﯿﺮي ﻣﺪل ﻫﺎي ﻣﻮﻟﺪ ﻣﺎﻧﻨﺪ ﻣﺪل ﺑﻠﻮﮐﯽ ﺗﺼﺎدﻓﯽ ﺻﻮرت
ﻣﯽ ﮔﯿﺮد ﮐﻪ ﻣﯽ ﺗﻮاﻧﺪ ﺑﻪ ﺑﻬﺒﻮد ﮐﺎراﯾﯽ اﻟﮕﻮرﯾﺘﻤﯽ و راه ﺣﻞ ﻫﺎي ﻋﻤﻠﯽ ﻣﻨﺠﺮ ﺷﻮد. اﯾﻦ ﭘﺎﯾﺎن ﻧﺎﻣﻪ ﺑﻪ ﺑﺮرﺳﯽ
ﻣﺴﺌﻠﻪ ﺑﻬﺒﻮد ﺑﺎزﯾﺎﺑﯽ دﻗﯿﻖ ﺟﺎﻣﻌﻪ ﻫﺎي ﺷﺒﮑﻪ ﺑﻪ ﮐﻤﮏ اﻃﻼﻋﺎت ﺣﺎﺷﯿﻪ اي در ﻣﺪل ﺑﻠﻮﮐﯽ ﺗﺼﺎدﻓﯽ ﺑﺪون
ﻣﻌﻠﻮم ﺑﻮدن ﭘﺎراﻣﺘﺮﻫﺎي ﻣﺪل ﻣﯽ ﭘﺮدازد.
-
كليدواژه لاتين
Machine Learning , Community Detection , Stochastic Block Model , Side Information , Exact Recovery
-
عنوان لاتين
Improving exact community detection in networks using side-information in a stochastic block model without knowing the model parameters
-
گروه آموزشي
مهندسي برق
-
چكيده لاتين
Community detection in graphs, which represent networks, has significant applica-
tions in sociology, biology, and computer science. However, it remains a challeng-
ing problem. The analysis of complex networks has significantly improved our un-
derstanding of community structures, which are a prominent feature of real-world
graphs. Despite the efforts of the interdisciplinary scientific community, a satis-
factory solution to this problem has not yet been achieved. The stochastic block
model (SBM), also known as the planted partition model, is a standard random graph
model used to study clustering and community detection in structured network data.
This thesis investigates improving the exact recovery of network communities us-
ing side information in the stochastic block model, without prior knowledge of the
model parameters. The problem involves clustering and identifying groups of nodes
with higher internal edge density compared to external edge density, a key aspect of
complex network analysis. Real-world systems, such as social networks, biological
networks, and technological networks, exhibit intricate structures and interactions.
These systems are often represented as graphs where vertices denote entities (e.g.,
individuals), and edges represent interactions between them. Community detection
is a specialized field of research aimed at deciphering the complex structures and
interactions in these graphs through clustering nodes based on the information pro-
vided by the graph. Semi-supervised clustering, which incorporates side informa-
tion, is an approach to community detection that leverages additional side informa-
tion and employs generative models like the stochastic block model. This approach
has the potential to enhance algorithmic efficiency and provide practical solutions
to the challenges of community detection in complex networks.
-
تعداد فصل ها
5
-
لينک به اين مدرک :